Basic Principles of Process Control Systems and Automation – Types of Analytical Methods, and Cell Counting

Your Objectives:

At the end of the lesson, you should be able to determine the importance of cell counting.

In-process control () analytical methods can be paired in two
groups:	
1) in-line or	-line
2) at-line or	-line
The	(1) will be discussed, and they are techniques used to
follow the process in real time (e	.g. temperature, pH, dissolved oxygen). The latter (2) are used
in	(Analytical quality control) for following the
	process and defining whether it falls into the acceptable

limits.

Why the need for several analytical methods?

 ${\bf AQC}$ makes up a part of ${\bf cGMP}$ (current Good Manufacturing Practices) which is concerned with:

- sampling
- specification
- testing
- documentation

release procedures ٠

These together ensure that the necessary and	relevant	is
performed so that	can be released for use, but only once	the
required quality are met.		

Science-based assessments for biologics

The	product	testing	standards	standards in 21CFR 6		610/ICHQ6B	encompass	
			safety:					

- sterility •
- mycoplasma •
- purity •
- adventitious viral agents •

and assessments of <u>other</u> product	including:
and assessments of <u>other</u> produce	including.

- identity •
- viability •
- potency

At-line IPC methods

Quantitative analytical	are necessary for:

- cell counting ٠
- metabolite analysis •
- product quantification •
- product quality •

• contaminant determination

Cell counting methods

- microscope counting
- Vi-Cell®
- absorbance (e.g., at 600nm)
- dry weight (for microorganisms)
 - colony-forming units (for microorganisms)

Why is cell counting necessary?

We need to know the total cell counts, viable cell counts, and viability, to determine

kinetics.	Each	cell	prod	uces	а	certain	amount	of
			[
product,	terme	ed t	he					

productivity (g product/ number of cells/h). Therefore, the more cells are present, the more product will be formed.

We need to know how reproducible	is (stability) <u>from one</u>

Γ

culture to the next.

We to know the health of the culture, i.e., how many cells are

and how many of these are actually viable.

٦

٦

We need to know when to add	inducers.	We need to know

when to the product.

Cell counting can be used to control the feed	rate of a fresh medium to obtain a defined fed-
batch, continuous or	culture. It is relatively easy to measure
cell counts in suspension cultures, but not so	o easy for cell
cultures. Because there is a big chance of hav	ving large errors in cell counting techniques, we
attempt to automate or standardize	, to avoid variability.

Cell counting techniques:

In-line / on-line

For methods used directly in the	, where no	sampling is

needed, these methods can provide continuous measurements suitable for monitoring and control (Process Analytical Technology, or PAT):

Direct methods
measuring cells as solid objects (e.g.

turbidity / absorbance; dielectric spectroscopy; NIR spectroscopy; MIR spectroscopy)

Indirect methods measure a component of a cell related to its

cell count (e.g. fluorescence spectroscopy (measures NADH, or Nicotinamide adenine dinucleotide Hydrogen); glucose or other product determination; O_2 or CO_2 measurements).

The main weaknesses with such methods are:

- robustness
- instability over longer periods
- interferences from other cell components
- calibration of methods

Off-line

This method does not involve the bioreactor, and so is

necessary (i.e. the need

to <u>break</u> the sterile boundary).

methods involve measuring cells as solid objects (e.g. cell dry weight; microscope counting; Vi-Cell[®]; turbidity / absorbance; dielectric spectroscopy; NIR; MIR)
methods measure some component of a cell which is

related to the cell number (e.g. fluorescence spectroscopy, which measures NADH; glucose or other product determination; O2 or CO2 measurements)

The pros and cons that come with the off-line method is that it is...:

- easy to calibrate
- time consuming
- intensive
 - person-to-person variation

The main weakness with such a method is the need to the

sterile boundary and to obtain a sample characteristic of whole culture.

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

AQC, bioreactor, break, characteristics, cell, culture, Direct, former, given, growth, harvest, immobilized, Indirect, involve, IPC, labour, manufacturing, methods, need, off, on, perfusion, potential, present, products, protein, same, sampling, specific, techniques, testing