Introduction to DSP - Cell Separation

Your	Ob	jectives:

At the end of the lesson, you should be able to sequence of steps for **Downstream Processing** (DSP).

Cell harvesting & cell separation

	moment for product harvesting shall have to be defined.										
2.	The	harvesting	point	will	depend	on	whether	the	product	is	а
				, secondary or mixed (a combination of p							and
	secon	dary) one.									

1. Once the DSP (downstream processing) production process has been defined, the

2	11	• 11	· · ·I	
~	Harvacting	ic licitaliv	Carrida	ALIT ANCA!
J.	Harvesting	is usualiv	carricu	out once.

•	the desired	of product (titre) has been achieved (g/L)

- the cell viability is high so as to avoid cell breakage and higher level of impurities
- the product is maximum

A product can be classified as being (either):

- 1. Intracellular, non-secreted
- 2. Secreted into the periplasmic space
- 3. Secreted into a culture medium

Intracellular, non-secreted

•	Characteristic of b	oacteria (e	.g. E. coli)						
•	Proteins				inside	the	cells	until	the
			of prote	ein exce	eds limit	and			
	precipitates as inc	clusion boo	dies						
•			must be	broken	to recover	the prot	ein (prod	uct)	
•	Protein must be s	eparated f	from cell o	debris, r	e-solubilize	ed			
•	DSP begins								
•	In this state, th	e product	requires	unit c	perations	for			
	separation from	the medi	um, cell				, cell o	lebris ren	noval,
	product solubiliza	ition,			and	non-solu	ıbles rem	oval.	
Secret	ed into periplasmi	c space			1				
•	Characteristic of				through v	which re	combinar	nt protein	gene
	has been linked to	o secretior	n protein g	gene (e.	g., E. coli)				
•	Proteins which a	re accumu	lated are	secrete	d into the	periplas	mic spac	e, which	is the
	space between t	he inner a	and			cel	l wall of	Gram-ne	gative
	bacteria								
•	Outer cell wall mu	ust be brok	ken to rec	over the	protein (i.	.e. Aduca	ınumab)		
•	Protein must be				from cells				
•	DSP begins								

• In this state the product requires unit operations for cell separation from medium, cell wall disruption, cell removal, product recovery.

Secreted into a medium

•	Is characteristic of having		cells	including	most	yeast,
	mycelial and ma	mmalian cells	5			
•	Proteins produced are secreted by cell and d	o not accumu	late int	racellularl	У	
•	Facilitates protein recovery, since it can be in			f	orm	
•	Protein must be separated from cells					
•	DSP begins					
•	In this case, state requires unit operations	for cell sep	aration	from me	edium	usually
	microfiltration or centrifugation, followed by	depth			S	so as to
	clarify harvest before DSP.					

Methods for cell separation

- Filtration
 - o Crossflow filtration (tangential)
 - Hollow fibre
 - o Internal spin filter E
 - External spin filter
- Settling devices
- Centrifuges
- Acoustic wave technology (standing waves: BioSep)
- Hydrocyclones

Protein types: https://en.wikipedia.org/wiki/List_of_types_of_proteins

A list of ten proteins in a proteome: https://en.wikipedia.org/wiki/List_of_proteins

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

accumulate, aggregates, bacteria, Cells, cell, concentration, disruption, eukaryotic, fungi, filtration, outer, primary, protein, quality, solubility, separated, soluble,