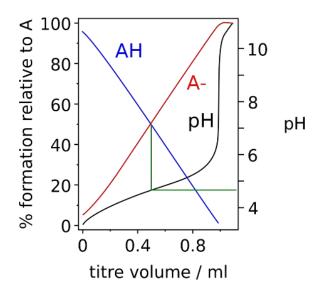
Buffer and Media Preparation – What Is a Buffer?

Your	Obi	iectiv	es:

At the end of the lesson you should be will able to explain how to make a buffer solution.


A buffe i	r			(more pr	ecise	ly, pH buffer o	hydrog	en ion b	uffer)
is an				solution	con	sisting of a	mixture	of a	weak
			and	its conjugat	e ba	ise, or vice ve	rsa). Its	pH cha	anges
insignifi	cantly wh	en a small	amount o	f strong acid	d or				is
added t	o it. Buffe	r solutions a	re used as	a means of	keepi	ng pH at a nea	rly const	ant valu	e in a
wide va	ariety of				appli	cations. In nat	ure, the	ere are	many
systems	that use	e buffering	for pH				. For	example	, the
bicarboı	nate buffe	ring system	is used to				the pH	of blood	d.

In					,	рН	(denoting	'potentia	l of
				or 'po	ower of	hydrogen	') is a scale	used to spe	cify the
				or				of an a	aqueous
solution	. Lower pl	ł				corre	spond to solu	tions which a	re more
acidic i	n nature,	while	higher				utions which 25 C or 77 F),		
(neither	acidic nor	basic)	and has a	a pH of 7	7.				

Substance	pH range	Туре
Battery acid	< 1	
Gastric acid	1.0 – 1.5	
Vinegar	2.5	Acid
Orange juice	3.3 – 4.2	Acid
Black coffee	5 – 5.03	
Milk	6.5 – 6.8	
Pure water	7	Neutral
Sea water	7.5 – 8.4	
Ammonia	11.0 – 11.5	
Bleach	12.5	Base
Lye	13.0 – 13.6	

The pH					is	logarithmic	and	inversely	indicates	the
concentrat	ion	of						ions	in	the
			(a l	ower _l	pH iı	ndicates a hig	gher c	oncentration	on of hydro	ogen
ions). Mor hydrogen i	•	isely, pH i	s the neg	ative (of th	ne base-10 lo	ogarith	nm of the	activity of	the
At 25°C, so	olutions	with a pH	less than	7 are					, and solut	ions
with a	рН	greater	than 7	are	<u> </u>					The
			valu	ue of t	he p	H depends o	n the	temperatu	ire being lo	wer
than 7 if tl	he tem	perature in	creases. Tl	ne pH	valu	e can be less	than	0 for very	strong acid	s, or

greater than 14 for very	strong bases. The pH so	cale is traceable	to a set of standard solutions				
whose pH is established l	by international						
Buffer solutions achieve	their		to pH change because of the				
presence of an		between the	een the weak acid HA and its conjugate				
base A ⁻ :							
$HA \rightleftharpoons H^+ + A^-$							
_	•		ne weak acid and its conjugate fted to the left, in accordance				
with <u>Le Châtelier's</u>		. Becau	se of this, the hydrogen ion				
	increases by I	ess than the am	ount expected for the quantity				
_	• •		he mixture, the hydrogen ion ne quantity of alkali added. The				
	is illustrated	by the simulate	d titration of a weak acid with				
pKa = 4.7. The relative	concentration of und	ssociated acid	is shown in blue, and of its				
	base in red.						

The		char	ges	relatively	slowly	in	the
	reş	gion, pH = pKa	a ± 1, 0	centered at p	oH = 4.7, w	/here [[HA] =
[A-]. Th	e hydrogen ion concentration	n decreases b	/ less t	than the amo	ount expec	ted be	cause
most of	the added hydroxide ion is cor	nsumed in the					
(OH− + HA → H2O + A−						
and only	y a little is consumed in the $iggl[$		reaction (which	is the		
reaction	that results in an increase in p	oH)					
(OH- + H+ → H2O.						
Once th	ne acid is more than 95% d	eprotonated,	the pl	1			
rapidly s	since most of the added alkali i	s consumed in	the ne	eutralization r	eaction.		

Helpful link: https://www.khanacademy.org/science/ap-chemistry/buffers-titrations-solubility-equilibria-ap/buffer-solutions-tutorial-ap/v/buffer-system

The pH of a solu	ution containing a buffering				can o	only vary					
within a narrow		, r	egardles	ss of what else n	nay be p	resent in					
the solution. In		Sy	rstems f	this is an essent	ial cond	lition for					
to function correctly. In human blood, for instance, we find											
a mixture of car	a mixture of carbonic acid (H_2CO_3) and bicarbonate (HCO_3^-) present in the plasma fraction,										
which constitute	s the major mechanism for n	naintainir	ng the								
level of blood at between 7.35 and 7.45. Outside this narrow range (7.40 \pm 0.05 pH unit), acidosis and alkalosis metabolic conditions rapidly develop, ultimately leading to death if the correct buffering capacity is not rapidly restored.											
If the pH value o	f a		rises or	r falls too much,	the effe	ctiveness					
of an enzyme de	ecreases in a process, know	n as			,	which is					
usually irreversib	le. The majority of biologica	I			that	are used					
in research are k	ept in a buffer solution, often	phospha	ate buffe	ered saline (PBS)	at pH 7.	4.					
In industry,		agents	are us	sed in fermentat	ion prod	cesses as					
well as in setting	the correct conditions for dy	es used i	n colou	ring fabrics. The	/ are also	o used in					
chemical		and				of pH					
meters.											

Simple buffering agents

Buffering agent	Useful pH range
Citric acid	2.1–7.4
Acetic acid	3.8–5.8
KH ₂ PO ₄	6.2–8.2
CHES	8.3–10.3
Borate	8.25–10.25

For	buffers	in	acidic						,	the	рН	may	be
					to	а	desire	ed v	/alue	by	a	dding	a
					acid, suc	h as h	nydrochl	oric ac	id, to	the pa	rticula	ar buffe	ring
agent.	For alk	aline	buffers,	a s	strong bas	e, su	ich as	sodium	hydr	oxide,	may	be ad	ded.
Alterna	atively, a	buffe	er					can be	mad	e from	a mi	xture o	f an

acid and its conjugate base. For example, an acetate buffer can be made from a mixture of acetic acid and sodium acetate. Similarly, an alkaline buffer can be made from a mixture of the base and its conjugate acid.

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

aqueous, analysis, agreement, acidity, acid, acidic, adjusted, agent, alkaline, base, basicity, basic, biological, buffer, buffering, calibration, chemical, chemistry, concentration, conjugate, denaturation, equilibrium, effect, enzymes, hydrogen', hydrogen, mixture, neutral, neutralization, principle, pH, pH, range, regulation, regions, regulate, reaction, resistance, rises, samples, solution, solution, solution, scale, strong, values,