Basic Principles of Process Control Systems and Automation – Measuring of Variables Critical to Controlling Processes – Temperature

Your Objectives:

At the end of this lesson, you should be able to be prepared to understand the important factors related to temperature variables.

One of the key variables	critical to controlling	processes is tem	perature , which is	why it must be
rigorously monitored to e	nsure both the		of temperature	and along with a
consistency of data. And t	this is basically because	a single		can require rigid
temperature control whitemperature batches, even			-	
maintain a stable and		temperature, bas	ed on the desired r	eaction.
Cultivation temperatures	are commonly monitor	red within an		range of ±
0.5°C. Temperature meas	urements are taken us	ing stainless steel	Pt100 sensors. Th	e temperature in
	bioreactors is control	lled in one of two v	vays:	
1. Inside the bioreac	tor vessel there is a hea	ter. Cooling is ensu	red by thin-walled	pipes, containing
	water, locate	ed inside the vess	el's upper cover. (Connected to the

pipes is an electromagnetic valve.

2. and cooling is expedited inside a thermostat and, with the help of a

pump, water circulates <u>through</u> a thermostat in the bioreactor jacket.

Variant 1 is less complex and ensures a more economically, yet constructive, solution. This variant works

effectively for	bioreactors with a volume of up to approx. 5 litres.

Variant 2 ensures a more evenly distributed volume of heat everywhere inside the bioreactor, which is essential for the cultivation of microorganisms.

	• • • • • • • • • • • • • • • • • • • •	
The prime cause of a possible lack of	in temperature(s) c	iuring the

temperature regulation process is incorrectly inputted PID (proportional-integral-derivative controller) parameters. This <u>is displayed</u> on a graph as temperature oscillations. The main challenge faced when

attempting to

the temperature accurately is that the cooling water's

<u>minimal portion</u> may be set too high, causing the need for the valves in the cooling water supply line to be readjusted. Another factor for the regulation accuracy is both area and density of the heat transfer

surface because, if the temperature of the inertia is high, accuracy is more

difficult to reach.

Pt100 sensor working principle

A Pt100 is a sensor used to	temperatures. It is one of many types of sensors

which falls into a group called Resistance Temperature Detectors, or RTDs.

Before explaining how the sensor works, it is worth looking at some of the terminology used as this is vital for identifying and distinguishing (various) sensors.

The sensor type Pt100 identifies two important pieces of information about the sensor. "Pt" is the chemical symbol for Platinum, and so this shows that the sensor is Platinum-based. The second part, "100", relates to the resistance of the device at 0°C. In this case 100 Ω . Variations in sensor names involve other materials used, such as Nickel (Ni) and Copper (Cu), as well as different resistance values, (e.g., 50 Ω , 500 Ω and 1000 Ω). In other words, other sensors might be identified as Cu100, Ni120, or Pt1000.

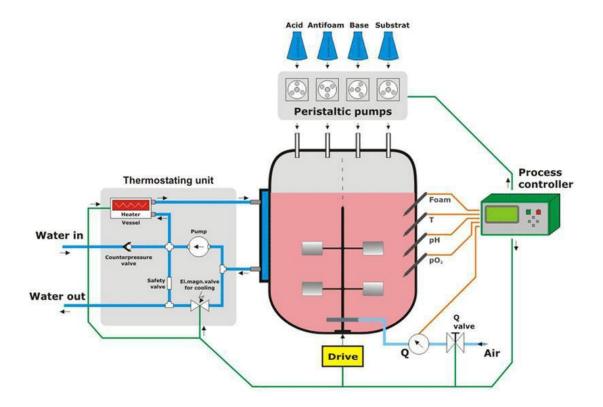
The reason a sensor falls into a category called Resistance

Detectors,

including the Pt100, is because "Resistance" denotes the temperature value when applying a change in resistance. For a Pt100, the resistance at 0°C is 100 Ω . And at 100°C, it is 138.5 Ω . Thus, the change in resistance, with each degree-Celsius change, amounts to 0.385 Ω .

Temperature system's continuous control

The purpose of the temperature system is to control the	e vessel temperature within	one (1) degree of
the setpoint in order to optimise the environment for cell		


The temperature control system consists of two things:

- Temperature **probes**, which provide feedback from within the
- (A) heat **exchanger**(s) that warm(s) or cool(s) the exterior of the bioreactor which, in turn, warm(s) or cool(s) the contents of the vessel.

,

Temperature probes

The computerised	proces	s controller				temperature	<u>-input</u> fror	n the
temperature probes inside the bioreactor (vessel). If the is too hot, or too								
, the controller signals the heat-transfer exchanger and cooling water then								
warms, or cools, the				accordin	gly.			

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

accuracy, accurate, batch, bioreactor, cold, cooling, greater, Heating, laboratory, measure, receives, replication, regulate, smaller, stability, temperature, Temperature, uniformity, vessel