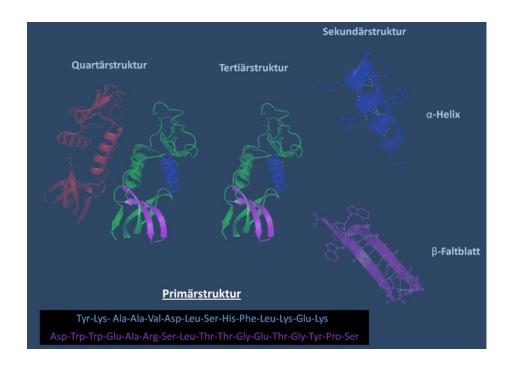
Introduction to DSP – Proteins and Their Structure

Your Objectives:
At the end of the lesson, you should be able to describe proteins and their structure.
Proteins are composed of of amino acids. A typical protein
contains between 200 and 300 amino acids. Each amino acid has a specific chemical formula and structure.
Cells make distinctive proteins by arranging the different amino acids in unique sequences. For each type of protein, the cell's genetic code dictates which amino acids are added and in what order.
These carefully arranged amino acids form a chain-like held
together by bonds. Because the chemical bonds are weak, they
can be easily affected by factors such as and pH.
Proteins can do their job only if they keep their . Changes in the
shape of a protein make it unable to function correctly. If the target protein (product) is
exposed to the wrong temperature or, the protein chain will lose
its shape and ability to function entirely. The of protein structure
is called denaturation. A protein cannot return to its original
shape.
Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule.

Proteins are polymers – specifically polypeptides – formed from sequences of amino acids, the monomers of the polymer. A single amino acid monomer may also be called a **residue**, indicating a repeating unit of a polymer. Proteins form by amino acids undergoing <u>condensation</u>

, whereby the amino acids los	se one water molecule per reaction in
order to attach bond to one another which has a peptide bo	•
30 amino acids is often identified as a peptide rather than	as a protein. To be able to perform
their function, proteins fold	into one or more specific spatial
conformations driven by a number of non-covalent	_ , such as
hydrogen bonding, ionic interactions, Van der Waals forces and	hydrophobic packing. To understand
the functions of proteins at a	level, it is necessary to determine
their three-dimensional . The	e scientific field of structural biology
employs techniques such as X-ray crystallography, NMR specelectron microscopy (cryo-EM) and dual polarisation interferon proteins.	
Protein structures range in size, from tens to severa	al thousands of amino acids. By
size, proteins are classified a	s nanoparticles ranging between 1–
100 nm. Very large aggregates can be formed from prothousands of actin molecules assemble into a microfilament.	otein subunits. For example, many
A protein generally undergoes reversible	changes in performing its
biological function. The alternative structures of the same conformational isomers, or simply, conformations, and traconformational changes.	•
Primary structure	
The primary structure of a protein refers to the	of amino acids in the
polypeptide chain. The primary structure is	held together by peptide
made during the process of p	protein biosynthesis. The two ends of
the polypeptide chain are referred to as the carboxyl terminus (N-terminus), based on the nature of the free grou	, , , , , , , , , , , , , , , , , , , ,


residues always starts at the N-terminal end (NH2-group), which is the end where the amino

group is not involved in a pe	ptide bond. The		structure of a protein	
is determined by the gene corresponding to the protein. A specific sequence of nucleotides in DNA is transcribed into mRNA, which is read by the ribosome in a process called translation. The				
sequence of amino acids in	insulin was		by Frederick Sanger, who	
established that proteins have defining amino acid sequences. The sequence of a protein is				
	to that protein an	d defines the struct	ure and function of the	
protein. The sequence of a protein can be determined by methods such as Edman degradation or tandem mass spectrometry. Often, however, it is read directly from the sequence of the gene,				
using the	code. It is s	trictly recommended	to use the words "amino	
acid residues" when discuss	sing proteins becaus	e, when a peptide k	oond is formed, a <u>water</u>	
	is lost, and there	fore proteins are m	nade up of amino acid	
	. Post-translational	modification such a	s phosphorylations and	
glycosylations are usually also considered a part of the primary structure, and cannot be read from the gene. For example, insulin is composed of 51 amino acids in two chains. One chain has 31 amino acids, and the other has 20 amino acids.				
Secondary structure				
Secondary structure refers to	highly regular local		structures on the	
actual polypeptide backbone chain. Two main types of secondary structure, the α -helix and the β -strand or β -sheets, were suggested in 1951 by Linus Pauling et al. These secondary structures are defined by patterns of hydrogen bonds between the main-chain peptide groups. They have a regular geometry, being constrained to specific values of the dihedral angles ψ and φ on the Ramachandran plot. Both the α -helix and the β -sheet represent a way of saturating all the				
	bond donors and		in the peptide	
backbone. Some parts of th	e	are order	ed but do not form any	
regular structures. They sho chain lacking any fixed thre				

may form a "supersecondary unit".

Tertiary structure

Tertiary structure refers to the three-	structure of monomeric and		
•	and β-pleated-sheets are folded into a compact driven by the non-specific hydrophobic		
, the burial of	hydrophobic residues from water, except that the		
•	protein domain lock into place by specific tertiary bonds, and the tight packing of side chains and		
disulfide bonds. The disulfide bonds are ext	remely in cytosolic		
proteins, since the cytosol (intracellular fluid) i	s generally a reducing environment.		
Quaternary structure			
Quaternary structure is the three-	dimensional structure consisting of the		
of two or mor	re individual polypeptide chains (subunits) that		
operate as a single functional unit (multimer). The resulting multimer is stabilized by the same non-covalent interactions and disulfide bonds as with a tertiary structure. There are many possible quaternary structure organisations. Complexes of two or more polypeptides (i.e. multiple subunits) are called multimers. More specifically, it would be called a dimer when containing two subunits, a trimer with three subunits, a tetramer for four subunits, and a pentamer with five. The subunits are frequently related to one another by symmetry operations,			
such as a twofold axis in a dimer. Multimers	made up of identical		
are referred to with the prefix of "homo-" w	hereas those made up of different subunits carry		
the prefix of "	, as with a heterotetramer: two alpha and two		
beta chains of hemoglobin.			

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

acceptors, aggregation, biological, bonds, chains, chemical, discovered, -dimensional, denatured, genetic, hydrogen, hetero, interactions, interactions, loss, molecular, molecule, primary, physical, pH, protein, rare, reactions, residues, sub-, subunits, structure, shape, structure, structural, sequence, temperature, unique,