Basic Principles of Process Control Systems and Automation – Measurement of Variables Critical to Controlling Processes

Your Objectives:
At the end of this lesson, you should be able to list, categorise and be prepared to appraise the .
Pressure System Continuous Control
A bioreactor is typically divided into two areas: working (the
amount of the total tank volume taken up by the culture) and
headspace (the remaining tank volume above the cell culture).
Maintaining positive pressure in the at all stages of the cell
culture process is an important factor in reducing the risk of
Maintaining positive involves air being pumped into the
bioreactor.
Namely, because the bioreactor is maintained at a pressure than
the atmospheric pressure, in the event of a leak in the vessel headspace, vessel air will flow out through the leak rather than draw air and contaminants into the vessel.
pressure in the vessel, for instance, helps to "thrust" more
oxygen into the culture.

Gas Introduction into the Headspace (Overlay Gas)

Gas in the bioreactor is continuously ; that is, "new" g	as flows
into the bioreactor, and "old" gas flows out through an exhaust line. Gas flowing	into the
bioreactor is to prevent contain	minating
from entering the vessel. Gas flowing out of the biore	eactor is
filtered to prevent organisms in the vessel from contaminating the room air.	
compressed is used to	establish
positive pressure in the vessel headspace and to sweep out by-products in the headspace gas is typically comprised of clean air and $2-5\%$ CO ₂ , which helps maintain pH.	ace. This
The controller monitors a pressure setpoint and an	overlay
compressed gas setpoint. The controller the overlay	gas flow
rate by adjusting a flow control valve (FCV) on the compressed gas line. The flow	/ rate is
maintained at its setpoint.	
To maintain the pressure setpoint, the controller press	ure data
from a pressure sensor mounted on the vessel. If the pressure	is too
, the controller opens the pressure control valve (PCV) on the
exhaust line slightly, to release pressure. If the	low, the
controller closes the PCV slightly.	

Dissolv	ved Oxygen (DO) System Cont	tinuous Control			
The ce	ell	needs oxyg	en for it to	o survive. The pu	rpose of the
dissolv	ed oxygen system is to provid	le the appropriat	:e		of oxygen
to the	cell culture to meet oxygen de	emand and consu	umption.		
What i	s "Dissolved" Oxygen?				
When		or any gas is c	lissolved in	a liquid, it is invisi	ble. The only
way o	xygen is visible is when it	appears as a			. Oxygen is
"bubbl	ed" into the cell culture by wa	ay of the sparge	tube.	٦	
A spar	ge tube is a stainless-steel			with a tip on one	e end. As the
	d air passes through the tip of tips are used in Biogen's man				
has its		for specific pro	ocesses.		
•		tips			
0	Provide efficient air				
0	Minimise shear				
•		tips			
0	Are easier to				

o Are more efficient at stripping away by-products, especially CO₂

transfer is the terminology that describes the movement of				
n into the bioreactor by way of the sparge tube to its				
in the media, and its subsequent uptake by the cells.				
Culture				
either as 100% pure or then as a fraction of				
air. A must generate enough				
ir through a filter, a sparge tube, and into the				
ough the cell culture. It is important that sufficient				
is provided in the cell culture so that all areas receive proper				
from the sparge tube are broken up by the				
impeller blades of the agitator, which facilitates the diffusion of air through the culture.				
factors affect the rate of diffusion of oxygen in the cell culture.				
red to:				
of oxygen				

• Degree of mixing

• Pressure

Pressure					
Pressure					
Two general categories of pr	essure measur	ring devices a	re used in I	oioprocessi	ng at Biogen:
	and			Because	bioprocessing
equipment is		frequently, a	a pressure	sensor mus	st be able to
withstand sterilization temper	atures and pro	vide accurate ı	measuremei	nts.	
Mechanical Pressure Gauges					
A	is a disc ma	ade of flexible	material. W	/hen pressu	ire is applied,
the diaphragm flexes ar]	a pointer o			diaphragm
In bioreactors, diaphragm gau	ges are typicall	y used to mon	itor pressure	е.	
Monitoring the pressure with	nin the chroma	atography skic	d and		
column is important for		prin	nary reasons	s:	
The column and its			are only ra	ted to with	istand certain
operating pressures					
• The resin bed can be d	isturbed or dan	naged if the op	perating pres	ssure becor	nes too great

	types of mechai	nical pre	ssure gau	ge scale	s, such as	pressure,
pressure/vacuum, and vacuum, are used at Biogen.						
Electrical Pressure Gauges						
	microfiltration sy	/stem, fo	r instance	e, is equ	ipped with	n pressure
transducers to		the i	retentate	and p	permeate	pressure.
	transducers	are	also	used	in	Biogen's
	systems.					
Pressure have a tubular body with a pipe fitting at one end, and						
a cable at the other. Within the transducer, a diaphragm houses						
a strain gauge. The strain gauge is a whose resistance changes						
according to the amount of strain placed on it. The transducer a						
small voltage electrical current through the cable to control equipment to indicate pressure.						
All transducers have two			. Some ha	ive sens	ors on bot	ch sides of
the diaphragm for measurin	g differential pressu	e betwe	en the flui	ds on ea	ch side.	

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

advantages, amount, Biogen's, bioreactor, bubble, bubbles, cell, circulation, Concentration, contamination, computer, consistently, compressed, compressor, components, culture, chromatography, distribution, Different, Devices, dissolution, diaphragm, Drilled-hole, electrical, exchanged, filtered, gas, gauges, high, higher, low, liquid, maintains, Measuring, measure, mechanical, Oxygen, oxygen, organisms, Positive, Porous, purification, Pressure, pressure, receives, sides, Sterile, sterilise, sensor, steam-sterilised, stainless-steel, Temperature, two, tube, transducers, transmits, Various, variables, volume