Buffer and Media Preparation – Types of Water

Your Objectives:

At the end of the lesson, you should be able to differentiate between different types of water.

	is a key ingredient	t used in man	У	
and life sciences operations.	Water is extensive	ely used as a	raw material,	ingredient, and
	, in the proce	essing, formu	lation, and	manufacture of
pharmaceutical products, a	ctive pharmaceutic	al		(APIs) and
intermediates. Water used fo	r the production of	pharmaceutica	1	
, whether for washing equip quality requirements as dicta (USP), Pharmacopeia Europe (oment, rinsing conta ated in standards p [EP].	iners or as an ublished by th	analytical rea e United State	gent, must meet es Pharmacopeia
Water has unique chemical		due	e to its polarit	ty and hydrogen
bonds. This means	it can diss	olve,		or
	many different co	ompounds. The	ese include co	ontaminants that
may represent hazards in the resulting in health hazards.	mselves, else react	adversely with	intended pro	duct substances,
Control of the quality of wate	er throughout the pr	roduction, stor	age and distrib	oution processes,
including	and cher	nical quality, i	s a major cond	cern. The waters
can be used in a variety of app	olications, some requ	uiring strict mi	crobiological co	ontrol and others
requiring little or none. The	needed microbial			for a given bulk
water depends upon its use.				

Water is not covered by a pharmacopoeial monograph but must

of a

comply with the regulations on water intended for human

quality equivalent to that defined in Directive 98/83/EC or laid down by the competent authority. Testing should be carried out by the manufacturer to confirm the quality of the water. Potable water may be used during the manufacture of active

and in the early stages of cleaning pharmaceutical manufacturing

, unless there are specific technical or quality requirements for

higher grades of water. Potable water is the prescribed source feed water for the production of pharmacopoeial grade waters. ("Potable Water" is the basis for all other types of water to be produced).

Drinking water quality standards (VWPOT) describes the quality

set for drinking water. Despite the fact that every living human being on this planet depends upon drinking water for survival, water which may also possibly contain various harmful constituents, there are no universally recognized and accepted international

for drinking water. And even where standards do exist and are

applied, the permitted concentration of individual constituents may vary by as much as ten times from one set of standards to another.

Many								со	untrie	es s	pecif	y sta	anda	ards	to l	be a	appl	ied	in t	heir	own
countr States,	y.Ir , it	n E :	urop is	oe, th the	nat e Un	enta ited	ils th I Sta	e Eu ates	irope Env	an I viror	Drink nmer	king ntal	Wat Pr	er I otec	Direc tion	tive A	e. Ai Igen	nd i cy	n th (EP	e U A)	nited that
							stanc	lards	as	requ	iired	by	the	Safe	e Dr	inki	ng \	Nate	er A	ct.	China
adopte	ed th	ne o	drin	king \	wate	r st	andar	d (e	quiva	lent	to t	he E	U's	GB3	838-	-200)2 –	Тур	e II)	, en	acted
under	its c	wr	n Mi	nistry	y of							a	nd								<i>,</i> in

2002. And countries without their own legislative or administrative framework for such

standards	may	adopt	published	guidelines	from	the				
						(WH	0).			
Where dri	inking	water	quality	standards	do	exist,	they	are	expressed	as
			or tar	gets rather	than r	equire	ments,	and	very few v	vater
standards have any legal basis and are therefore not subject to enforcement. Two exceptions										
are the Euro	opean			V	Vater				an	d the
Safe Drinkin standards.	ıg Wate	er Act ir	n the Unite	d States, wh	ich do r	require	legal c	omplia	ance of spe	cified

In Europe, member states enact appropriate local

to mandate

the directive for their respective country. In addition, routine inspection and, if necessary, enforcement is enacted by means of penalties imposed by the European Commission upon non-compliant nations.

Comparison of parametric values

The following table provides a comparison of a selection of parameters for listed by the World Health Organization (WHO), the European

Union (EU) and Environmental Protection Agency (EPA).

" indicates that no standard has been identified by editors of this article and

ns indicates that no standard exists.

* Action level; not a concentration standard. A water

system exceeding the action level must implement "treatment techniques" which are enforceable procedures.

** TT (treatment technique). The **public water system** must

that the combination of dose and monomer level does not exceed: Acrylamide = 0.05% dosed at 1 mg/l (or equivalent); Epichlorohydrin = 0.01% dosed at 20 mg/l (or equivalent).

Parameter	Table	World Health Organization	European Union	USA
1,2-dichloroethane		п	3.0 µg/l	5 μg/l
Acrylamide		II	0.10 μg/l	TT**
Aluminium	AI		0,2 mg/l	
Antimony	Sb	ns	5.0 μg/l	6.0 μg/l
Arsenic	As	10µg/l	10 μg/l	10µg/l
Barium	Ва	700µg/l	ns	2 mg/L
Benzene		10µg/l	1.0 µg/l	5 μg/l
Benzo(a)pyrene		II	0.010 μg/l	0.2 μg/l
Boron	В	2.4 mg/l	1.0 mg/L	11
Bromate		II	10 μg/l	10 μg/l
Cadmium	Cd	3 µg/l	5 μg/l	5 µg/l
Chromium	Cr	50µg/l	50 μg/l	0.1 mg/L
Copper	Cu	11	2.0 mg/l	1.3 mg/l*
Cyanide		11	50 μg/l	0.2 mg/L
Epichlorohydrin		II	0.10 μg/l	TT**

Fluoride		1.5 mg/l	1.5 mg/l	4 mg/l
Iron	Fe		0,2 mg/l	
Lead	Pb	II	10 μg/l	15 μg/l*
Manganese	Mn		0, 05 mg/l	
Mercury	Hg	6 µg/l	1 µg/l	2 µg/l
Nickel	Ni	II	20 μg/l	11
Nitrate		50 mg/l	50 mg/l	10 mg/L (as N)
Nitrite		II	0.50 mg/l	1 mg/L (as N)
Pesticides — Total		II	0.50 μg/l	11
Pesticides (individual)		11	0.10 μg/	11
Polycyclic aromatic hydrocarbons l		II	0.10 μg/	11
Selenium	Se	40 μg/l	10 μg/l	50 μg/l
Tetrachloroethene and Trichloroethene		40µg/l	10 μg/l	п
vinyl chloride			0,50 μg/l	
chlorides			250 mg/l	
electrical conductivity			2500 μS cm-1 at 20 °C	

Water for	use (WPU)

Pharmacopoeial requirements or guidance for WPU are described in national, regional and						
international pharmacopoeias and limits for var	ious	or classes of				
impurities are either specified or advisable. Companies wishing to supply multiple markets						
should set specifications that meet the strictest		from each of the				

relevant pharmacopoeias. Similarly, requirements or guidance are given in pharmacopoeias on the microbiological quality of water.

Water for Injection (WFI)

Until April 2017, the production of Water for Injections (WFI) had been limited to production by distillation only. Following extensive consultation with stakeholders, the Ph. Eur. monograph for Water for Injections was revised in order to allow the production of WFI by a

	process equivalent to		, such as
reverse	, which may be	single-pass or double-pass, cc	oupled with

, which may be single-pass or double-pass, coupled with

other appropriate techniques such as electro-deionisation, ultrafiltration or nanofiltration. The revised monograph was published in the Ph. Eur. Supplement 9.1 and became effective on 1 April 2017.

This change brings the Ph. Eur. more closely in line with the US Pharmacopeia and the Japanese Pharmacopœia, allowing production of WFI by distillation or by a purification process proven "equivalent or superior to distillation," and "by distillation or by reverse osmosis &/ ultrafiltration," respectively.

Water for	is water of extra-hig	h quality without s	ignificant
. A		version is used fo	r making
solutions that will be administered into e	ither a vein (), muscle

(IM) or under the skin (). Before such use, other substances

generally must be added to make the solution more or less isotonic. (A non-sterile version is also sometimes used in manufacturing, with sterilization occurring later in <u>the</u> production process.)

If given by injection into a vein without first making it more or less isotonic, a rupture of red

blood cells may occur, resulting in a of the kidneys. Excessive

amounts of WFI may result in fluid overload. Water for Injection should therefore contain less than a mg of elements other than water per 100 ml. Versions with agents that stop

growth are also available. WFI is on the WHO's List of Essential

Medicines, and is available over the counter.

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

absorb, bacterial, certify, complication, consumption, contamination, concentrations, distillation, developed, Drinking, Directive, Ecology, Environment, equipment, establishes, guidelines, impurities, ingredients, intravenous, injection, Health, legislation, microbiological, Organization, osmosis, Potable, public, pharmaceutical, pharmaceutical, parameters, products, properties, purification, requirements, standards, specification, subcutaneous, sterile, substances, solvent, suspend, Water, World