Basic Principles of Process Control Systems and Automation – Measurement of Variables Critical to Controlling Processes

Your Objectives:			
At the end of this lesson, you s	hould be able to list, cate	gorise and be prepared to	o appraise the
	I		
Pressure System Continuous Co	ontrol		
A bioreactor is typically divid	ded into two areas: wo	orking	(the
amount of the total tank vol	ume taken up by the		culture) and
headspace (the remaining tank	volume above the cell cu	lture).	
Maintaining positive pressure i	n the	at all stages of the	ne cell culture
process is an important factor	in reducing the risk of		. Maintaining
positive	involves air being pu	mped into the bioreactor.	
Namely, because the bioreacto	r is maintained at a	pre	ssure than the
atmospheric pressure, in the ethrough the leak rather than dr		• •	will flow out
pre	ssure in the vessel, for in	stance, helps to "thrust"	more oxygen
into the culture			

Gas Introduction into the Headspace (Overlay Gas)

Gas in the bioreactor is continuously	; that is, "new" gas flows into
the bioreactor, and "old" gas flows out th	rough an exhaust line. Gas flowing into the bioreactor
is to preve	ent contaminating from
entering the vessel. Gas flowing out of t vessel from contaminating the room air.	he bioreactor is filtered to prevent organisms in the
compressed	is used to establish positive
pressure in the vessel headspace and to typically comprised of clean air and 2 – 5%	sweep out by-products in the headspace. This gas is 6CO_2 , which helps maintain pH.
The controll	er monitors a pressure setpoint and an overlay
compressed gas setpoint. The controller	the overlay gas flow rate by
adjusting a flow control valve (FCV) on t	he compressed gas line. The flow rate is maintained
at its setpoint.	
To maintain the pressure setpoint, the co	ntrollerpressure data from
a pressure sensor mounted on the vessel.	If the pressure is too, the
controller opens the pressure control v	valve (PCV) on the exhaust line slightly, to release
pressure. If the	is too low, the controller closes the PCV slightly.

Dissolv	ed Oxygen (DO) System C	ontinuous Control		
The cel	I	needs oxygen fo	r it to survive. The	purpose of the dissolved
oxygen	system is to provide the	appropriate		of oxygen to the cell
culture	to meet oxygen demand a	and consumption.		
What is	s "Dissolved" Oxygen?			
When		or any gas is disso	lved in a liquid, it i	s invisible. The only way
oxygen	is visible is when it appe	ars as a	. 0	Oxygen is "bubbled" into
the cell	culture by way of the spa	ge tube.		
A spar	ge tube is a stainless-ste	el	with a	tip on one end. As the
	air passes through the tiptips are used in Biogen's n	• =		
has its		for specific proces	ses.	
•		tips		
0	Provide efficient air			
0	Minimise shear			
•		tips		
0	Are easier to			

o Are more efficient at stripping away by-products, especially CO₂

]									
	transfer is	s the termino	logy	that d	escri	ibes tl	ne movei	ment o	foxy	gen
from its introduction	into the	bioreactor	by	way	of	the	sparge	tube	to	its
	in the med	dia, and its su	ıbseq	juent ເ	ıptak	e by t	he cells.			
	J									
Gas Introduction into the	Cell Culture	e								
Oxygen can be delivered e	ither as 100	0% pure or th	ien as	s a trac	ction	of				
air. A	mu	ıst generate	enou	ıgh pr	essui	re to	force the	e air th	roug	h a
filter, a sparge tube, and ir	nto the									
The air bubbles rise	through	the cell o	cultur	re. It	is	imp	ortant	that s	uffici	ent
is provided in the cell culture so that all areas receive proper								per		
oxygenation. Air from the sparge tube are broken up by the impeller										
blades of the agitator, which facilitates the diffusion of air through the culture.										
factors affect the rate of diffusion of oxygen in the cell culture.										
These include, but are not limited to:										
•										
Viscosity of the media										
•	of	oxygen								

- Degree of mixing
- Pressure

Pressure
Pressure
Two general categories of pressure measuring devices are used in bioprocessing at Biogen:
and . Because bioprocessing equipment
is frequently, a pressure sensor must be able to withstand
sterilization temperatures and provide accurate measurements.
Mechanical Pressure Gauges
A is a disc made of flexible material. When pressure is applied, the
diaphragm flexes and moves a pointer on a scale. Some diaphragm
are mechanical, and others are electrical.
In bioreactors, diaphragm gauges are typically used to monitor pressure.
Monitoring the pressure within the chromatography skid and
column is important for primary reasons:
The column and its are only rated to withstand certain
operating pressures
• The resin bed can be disturbed or damaged if the operating pressure becomes too great

	types of mechan	iical pressure gaug	e scales, such as pressure,				
pressure/vacuum, and vacuum, are used at Biogen.							
Electrical Pressure Gauges	s						
	microfiltration sys	stem, for instance,	is equipped with pressure				
transducers to		the retentate	and permeate pressure.				
	transducers are a	lso used in Biogen	's				
systems.							
Pressure have a tubular body with a pipe fitting at one end, and a							
cable at the other. Within the transducer, a diaphragm houses a							
strain gauge. The strain gauge is a whose resistance changes							
according to the amount of strain placed on it. The transducer							
small voltage electrical current through the cable to control equipment to indicate pressure.							
All transducers have two		. Some have	sensors on both sides of the				
diaphragm for measuring differential pressure between the fluids on each side.							

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

advantages, amount, Biogen's, bioreactor, bubble, bubbles, cell, circulation, Concentration, contamination, computer, consistently, compressed, compressor, components, culture, chromatography, distribution, Different, Devices, dissolution, diaphragm, Drilled-hole, electrical, exchanged, filtered, gas, gauges, high, higher, low, liquid, maintains, Measuring, measure, mechanical, Oxygen, oxygen, organisms, Positive, Porous, purification, Pressure, pressure, receives, sides, Sterile, sterilise, sensor, steam-sterilised, stainless-steel, Temperature, two, tube, transducers, transmits, Various, variables, volume