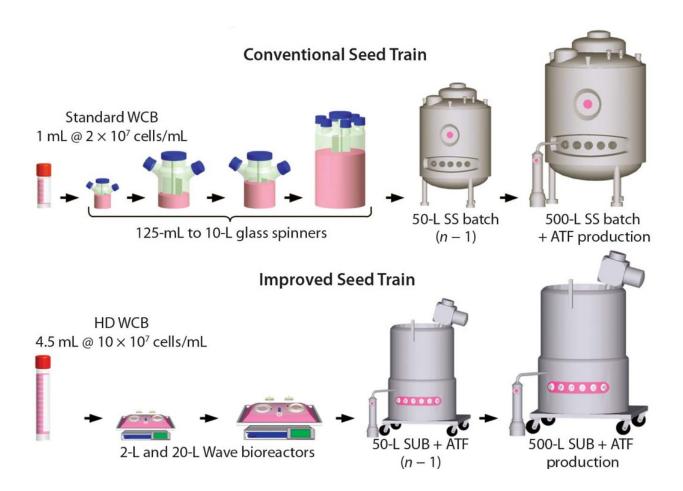
Introduction to USP – Seed Train Development


Your Objectives:

At the end of the lesson, you should be able to sequence the steps in seed train development

A seed train serves to generate an adequate	of cells for the		
inoculation of a production bioreactor. From	volumes used for either cell thawing or cell line		
, the cell nu	mber will have to be increased, rendering it both		
time and cost intensive.			
A typical cell	process begins with the thawing of a		
cryopreserved cell-bank vial, followed by succe as shake flasks, spinners, Wave bags, and stirre	essive expansions into larger culture vessels, such ed bioreactors.		
This approach presents several	: Shake flasks or spinners used		
in the initial stages require	manipulations inside a laminar		
flow hood, making them vulnerable to contamination and operator error. In addition, since a conventional cryopreserved cell-bank vial typically contains low cell numbers, the seed-train			
process is time	. It takes longer and becomes even more		
complex with much larger production	because additional		
large-volume culture	are required to support scale up to a		
	reactors being usually inoculated at a density of cessary growth phase of 5 to 10 days, which is		
basically unfavourable since, during that period	od, cell is rather		
low (as is the initial product yield).			

Previous studies have sh	own that h	igh-density	(HD) cell	banking	can be
	at reducing t	the number of	of seed-train	steps requi	red whilst
	operational s	uccess in see	d-train proce	esses, namely	using HD
cell banks containing 450 milli	on viable cells/v	vial to directl	y inoculate	a 20-L Wave	bag. One
particular	re	vealed that	the use of	HD cell-ban	ıks would
eliminate several intermediate	shake-flask expa	ansion			thereby
reducing process times by up to	nine (9) days.				
Another study combined HD	cell banks with	a single-see	d		
capable of operating at several by as much as 60 to 70	_		_	•	
	over stainle	ss-steel syst	ems, includ	ing enhance	ed facility
flexibility, time			in set-u	o, cleanin	g, and
	, not to menti	on a reduction	on in capital i	nvestment. [Disposable
Wave bioreactors are, therefore	e, routinely used	l in seed-train	expansion p	orocesses bec	ause they
also decrease		risk (typica	ally requiring	g no manipu	llations in
laminar-flow hoods). Because s	uch bioreactors	are disposabl	e, no extra c	umbersome a	and costly
	are needed fo	or assembly, c	leaning or st	erilization.	
Perfusion cell-culture processe	s is in greater d	emand in thi	s industry as	perfusion b	ioreactors
have shown success in manuf	acturing viable	commercial			

Perfusion	can reach high cell densi	ties in relatively small
bioreactor volumes and will remove		product from cultures
more quickly than the more conventationed advantages (and oth	•	
over	seed expansion.	

The illustration compares a novel seed-train process using HD cell banking, disposable Wave bioreactors, and Refine Technology's Alternating Tangential Flow (ATF) perfusion cell-culture technologies over a conventional one. An example of this process for a 500-L production perfusion bioreactor with a conventional seed-train process.

Using the HD cell bank approach involves eliminating two intermediate spinner steps, by allowing for direct inoculation into a 2-L Wave bioreactor. Replacing spinners (125 mL to 10 L) with Wave bioreactors (2 L and 20 L) means significantly reducing the number of required manipulations in a **laminar flow cabinet** (**tissue culture hood**)*, improving operational success by allowing operation under a "closed" system. Additionally, using ATF perfusion technology at the n – 1 stage (50-L bioreactor with ATF perfusion device) enables cell densities to be \geq 50 × 106 viable cells/mL, allowing for an inoculation density of 5 × 106 viable cells/mL in the 500-L production bioreactor rather than 0.5 × 106 viable cells/mL in the conventional cell culture process. Higher seeding density helps reduce the 500-L production bioreactor growth phase by approximately five days, saving manufacturing plant time for a 500-L bioreactor operating for 50 days.

*A laminar flow cabinet, or tiss	sue culture hood , is a carefully enclosed bench designed to
prevent contamination of semicon	onductor wafers, biological samples, or any particle sensitive
	•

The Bioreactor Train

Biogen	bioreactors	are	organized	into
		, €	each being <u>larg</u> e	er than

the next. A bioreactor trains consists of different volumes:

- 60 litre
- 100 litre
- 235 litre
- 750 litre
- 950 litre
- 2000 litre
- 3750 litre
- 15000 litre
- 18500 litre

Each bioreactor feeds into the next. The train is a continuation of the scale up process that begins with the inoculum preparation stage and ends usually with the harvesting process in the largest bioreactor.

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

advantages, bioreactors, bioreactor, culture, challenges, contamination, concentrations, consuming, effective, improving, maintenance, manual, materials, method, number, processes, study, steps, savings, sterilization, resources, therapeutics, trains, unstable, vessels