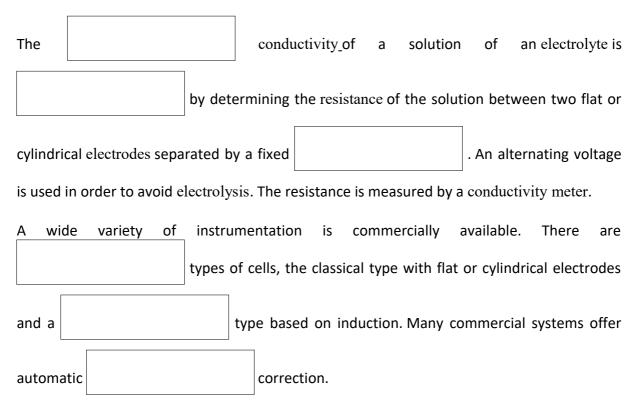
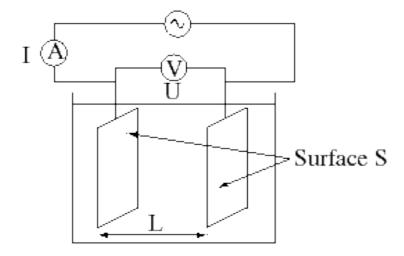
Measurement of Variables Critical to Controlling Processes – Conductivity

Your Objectives:


a 1 m \times 1 m \times 1 m solid


At the end of this lesson, "Measurement of variables critical to controlling processes – Conductivity" you will be able to appraise the conductivity variable.

of material has sheet contacts on two

opposite faces, and the resistance between these contacts is 1 Ω , thereby the resistivity of the material is 1 $\Omega \cdot m$.

Measurement

Here is perhaps a good explanatory video of that:

https://www.youtube.com/watch?v=sVcG65dMZfk

In the highly regulated biotech and			industries, effective analytical
measurement is critical for ensuring	high production qua	ality an	d operational efficiency whilst
meeting	tandards. One key		application
is conductivity analysis during clea	nn-in-place (CIP) pr	ocesses	s, though it is also used for
several other	. Conductivity	measu	rement is so integral to the
pharmaceutical manufacturing produnderstanding some basics of its op		•	<u> </u>
in the effe	ectiveness and effici	ency of	CIP.
Conductivity in CIP (Cleaning in Plac	e)		
The CIP process ensures that equipm	nent is cleaned and	mainta	ined to minimise any possible
cross-contamination and improv	re		and product quality.
Conductivity analysis is a meas	ure of how well	l a so	plution conducts electricity.
solutions	are more conducti	ve thar	n water used for flushing the
system, thus conductivity measuren rinsing to ensure completeness.	nent enables plants	s to mo	nitor cleaning steps and final
Optimally, a CIP process will maximi increase CIP time and you will min efficiency, reduce energy requirement	nimize production	downti	me while optimizing thermal
The multi-step CIP process inc	cludes initial and	d final	drain, pre-rinse, sodium
wash, a	nd post-rinse. Sor	me pro	ocesses may also include a
sanitizing cycle so as to reduce		со	ntamination, by using strong
oxidants such as hydrogen peroxide	2,		, chlorine dioxide, or other
chlorine-containing compounds. It	is critical that pr	rocessir	ng plants ensure that these

chemicals are thoroughly removed only to avoid cross-				
contamination but also to prevent corrosion of .				
Effective cleaning is determined by detergent strength, cleaning time, and				
. Conductivity measurement is used throughout the				
process to ensure the right detergent concentration and to				
monitor the completion of each step. By measuring the conductivity of the returning acid and caustic solutions, plants can confirm that the detergent is the right strength, with the				
correct concentration of acid and caustic, for each CIP . These				
conductivity measurements are proportional to the concentration or solution strength and				
are recorded for . During the CIP , since				
it is common for fluids to be only partially neutralised, conductivity analyses will indicate when additional concentrate should be added.				
By measuring conductivity, plants can determine the interface between				
solutions and rinse water. When the conductivity drops to the				
value of rinse , it indicates that the next				
in the cycle may begin. This procedure minimises CIP while				
following (standard) regulatory compliance. Conductivity is also an effective way to detect				
the interface the cleaning solutions and the product so that valves				
can be switched at the right time so as to prevent both cross-contamination				
product wear and tear.				

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

and, bacterial, between, current, CIP, Cleaning, cleaning, circuit, cube, distance, difference, equipment, electrical, electrical, Greek, hygienic, hydroxide, low, material, metre, measured, measurement, not, ozone, unit, pharmaceutical, processes, process, safety, step, SI, second, two, temperature, temperature, time, validation, water