Introduction to DSP – Harvesting

Your Obj	ectives:
----------	----------

At the end of the lesson, you should be able to sequence the steps of harvesting.

cell is a critical step in connecting upstream monoclonal antibody production with downstream purification. Selecting the cell culture process can be challenging. This decision is made early on in process development; a sound understanding of the current process, as well as of the available, is required.
harvesting technology based on the characteristics of the cell culture process can be challenging. This decision is made early on in process development; a sound understanding of the current process, as well as of the
challenging. This decision is made early on in process development; a sound understanding of the current process, as well as of the and cons of the various cell
harvesting available, is required.
Companies will take decisions as to which harvesting technique best suits their own process,
and as to which variables would be preferential for .
The selected harvesting method and equipment depends on (1) the type of cells, (2) product being harvested, and (3) properties of the process fluids. Traditional (standard) techniques include membrane microfiltration, tangential-flow filtration (TFF, or crossflow filtration),
be coupled with either microfiltration or centrifugation with TFF or then with depth filtration.

Centrifugation

Disc-stack centrifugation (e.g. from	ı Alfa Laval Inc. or West	falia Separat	tor Group Ltd.)	has been
in use for	harvesting for som	ne time. A d	lisc-stack centr	ifuge uses
, incl	ined conical discs to sep	parate out w	vhole cells and	l large cell
debris.				
Shearing, however, can	cells	and thereby	increase the	number of
submicron particles, particles whatechniques coupled with second-s			•	
filtration can	fu	rther cla	arification,	removing
solid	particulates.			
Filtration				
The bioprocess industry adopted	membrane clarification	(purificatio	on) methods f	rom other
technologies; but it has also		modules	specifically de	signed for
biopharmaceutical purposes, include	ding for primary clarifica	tion of ferm	entation and o	ell-culture
systems. When a membrane tech	nique is		, the size a	nd fouling
potential of the membrane is consi	dered.			
Microfiltration is	sensitive to	changes in f	feedstock qual	ity such as
cell culture viability, cell density,	and medium componer	nts. High ce	ll densities an	d low cell
viabilities can result in high tran	ismembrane pressure	() for
constant-flux membranes, the external relatively lower for typical cro	•			

	of feed solution across	s the memb	rane reduce	es concentr	ration
polarization and creates	a pressure drop, forc	cing a size-	exclusion (condition.	Such
	are currently available v	vith various p	ore sizes, t	ypically bet	ween
0.1μm and 1μm for primary from Pall Corporation).	harvest (e.g. EMD Millipo	ore's ProStak	system and	l PallSep Bi	otech
Depth filtration retains parti	cles, both larger and smal	ler		the	ir
pore size, throughout their padsorption through hydroph				xclusion and	d
	filtration provides some	benefits, but	is not witho	ut its limita	tions.
Commercially available technology (Corporation); encapsulated of formats (e.g. <i>Millistak+</i> podes	modules (<i>Supracap</i> 200, by	y Pall Inc.); ar	nd disposable	e, scalable	
Cell separation using depth	filters				
Benefits					
 Low material and har 	dware costs				
• Ease of use					
• Fast process					
High flexibility from s	cale-up options (e.g. for m	nultiproduct f	acilities)		
Filtration with minim	al shearing forces so as to	offer cell and	l product pro	otection	
•	approved materia	als			

- High-quality of filtrate
- Space-savings equipment

Disadvantages

Necessity of monitoring differential pressure
for conducting economic evaluation at all stages?
Necessity of the removal and disposal of filters
Scale-up limitations like budget limits or infrastructural limits
Tangential-flow filtration: Methods for harvesting small-scale
may not work for process scales of between 10,000 and 20,000 litres. As Ian Sellick observed,
"Handling requirements for such large call for employing larger
and more continuous types of processing systems, often some form of TFF". TFF is
for fine-sized-based separations since it retains particulates and
other molecules too large to pass through its membrane pores, and are transported
the tangential flow.
TFF configurations include both cassettes (<u>flat</u>) as well as hollow-fibre formats. In his article, Sellick describes a compact TFF cassette device that uses polyethersulfone (PES) membranes
and screens to form flow paths that prevent product channelling
(which occurs when membrane surface area is not fully used and the feed channels to the
retentate). He also describes enhanced hollow-fibre for cell
perfusion that will have used a nonbinding polyvinylidene difluoride (PVDF). Disposable, presanitized TFF cassettes provide several benefits over many traditional cassette formats,
including cost-savings, lower of cross contamination, and greater
manufacturing flexibility.

 $\textbf{Source:} \ \underline{\text{https://bioprocessintl.com/downstream-processing/chromatography/a-decade-of-harvesting-methods-331186/}$

<u>Notabene:</u> "e.g." = one of other examples (zum Beispiel) / "i.e." = namely (sprich, nämlich, das heisst)

Optimisation
have been made to correlate the characteristics of a cell culture
(e.g. viability, density) and the efficiency of a harvest process. In one study of a high cell density
culture, the of the primary recovery depended on cell density and
cell viability. High cell densities and low viabilities result in larger numbers of whole cells and
solid such as colloids and cell debris. High titres* typically
generate from conditions of high cell densities and low viability. Using turbidity as a
for product quality, researchers demonstrated a linear correlation
between cell culture viability and clarification efficiency a given
centrifugation condition. Their also showed that higher feed rates
lowered clarification because of lower centrifuge residence times and that the correlations for
the centrifuge were the same as those for the subsequent depth
filtration step.
The increasing use of single-use technologies in upstream processes may
a shift in harvest strategies. With traditional fed-batch culture
processes, harvest clarification is usually achieved by centrifugation followed by depth filtration. For processes based entirely on disposables, the disc-stack centrifuge needs to be
by filtration alone".

* Titre : (US: titer) = concentration of a solution determined by titration, the minimum volume of a solution needed to reach the end point in a titration; the concentration of an
antibody, as determined finding the highest dilution at
which it is still able to cause agglutination of the antigen.
Scale Challenges
The current trend towards a small-scale batch process will necessitate primary recovery
techniques that can provide quick . A system of glass-fibre filters,
coupled with a retentive membrane to provide "a rapid solution that can be implemented with very little preparation," might be used. Glass-fibre and polyethersulfone
are inherently low in extractables and have been validated for low
levels of endotoxin and other contaminants. They are steam sterilizable and are compatible
with gamma irradiation, enabling pressure sterilization with
method.
TFF and centrifuge-depth filtration are methods for harvesting
large-scale batches. Process transfer, however, sometimes requires alternative, streamlined approaches. A <i>Genentech</i> study evaluated various dual-layer, single-stage depth filter media to
an alternative to its traditional two-stage depth filtration train to
be used at a separate facility. The work involved at various
turbidities, in a system that demonstrated increased capacity at
all levels without significant plugging of the internal pore structure of the depth filters. Researchers further suggest that "one key to increasing future depth-filter capacity may () be
to control particulate clustering () or modulate flow rate to
exploit critical shear thresholds within a depth filter."

High-density cell cultures			
As increas	sed during this past c	decade, so too did the importand	e of
efficient product recovery methods.	With monoclonal	t	iters
reaching \sim 25 g/L and the expectation of	of even greater value	es in the future, clarification of h	ıigh-
density cell cultures will present uni	que challenges to	. E	ver-
increasing amounts of cell debris will no	eed to be removed o	quickly	
prevent bottlenecks in downstream pro	cesses.		

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

along, antibody, avoid, best, batches, bioreactors, biomanufacturers, by, cell, centrifugation, damage, Depth, developed, diagonal, Efforts, either, FDA, find, for, filters, flow, harvesting, highly, impurities, marker, membranes, modules, Need, provide, pros, quality, replaced, require, resulting, results, risk, shown, smaller, suitable, stacked, technologies, testing, than, them, to, titres, times, TMP, turnarounds, typical, used,