Buffer and Media Preparation – How to Prepare a Solution

Your Objectives:

before the solute separates,

At the end of the lesson, you sh	ould be able	to make a solution	on.	
What is a solution?				
А	is a			(oftentimes a water-based
one) into which one or more			/com	ponents are added (solutes)
that are completely soluble.				
If something is added to a s	olvent maki	ng it		, it creates a
, ;	a 2-phase sys	stem or an emul	sion. If	not, and they are the same
then: "creates a suspension , or	what is calle	d a 2-phase syste	em, or	."
At all stages of a biopharmace	utical manuf	acturing process	, the	
must remain		in the media	and	
employed. And the only insolution components of the cells release				=
Some terminology				
•				
This is the maximum am	ount of a sol	ute which can b	e disso	lved in a solvent (saturation)

, (etc.)

This describes any		which 'likes' water; namely, something
that	readily i	n water.
	(lipophilic)	
	n water, or then, it is sor	er; in this case, it is something which either mething that 'favours' lipids; hence, it readily
		which, by its having both hydrophilic and but also hydrophobic (e.g. a detergent).
Density (specific)
	, or density, of a solutionsity of 1.00 g/cm3 , or 1	n is the mass of a solution per unit volume; 00 kg/L, or 1000 g/L.
NB: The	char	nges according to the temperature. e.g. water!
•	added to the water, the pure water, the density	ne density increases; thus, if we added 20 g becomes 1020 g/L.
Making a solution		
		I .

	(oftentimes a solid)) into a specific amount of a solvent.
One of the most common way	s of expressing the	of the
solution is as M (),	which is moles of solute per litre of
solution.		
Example of How to Prepare a Solution Prepare 1 litre of 1.00 M NaCl solution		
Prepare 1 little of 1.00 W Naci solution		
Firstly, calculate the molar_		of NaCl, which is the mass of a mole of
Na plus the mass of a mole of Cl, or 22	2.99 + 35.45 = 58.44	4 g/mol
1. Weigh out 58.44 g of NaCl;		
2. Place the NaCl in a 1-litre volu	metric_	;
3. Add a small volume of the salt;		, deionized water so as to dissolve
4. Fill the flask up to the 1-L line.		
·		
If a different	is required,	, then multiply that number times the
molar mass of NaCl. So, for example, g/mol of NaCl in 1-L solution, or 29.22	=	5 M solution, you would use 0.5 x 58.44

Molarity is expressed in terms of litre of solution, and *not* litres of solvent. To prepare a solution, the flask is filled to the mark. In other words, it is incorrect to add 1 litre of water to a mass of sample if you wanted to prepare a molar solution.

Helpful link: https://www.youtube.com/watch?v=0_CsM6br4Pl

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

Amphipathic, buffers, compounds, concentration, components, density, dissolves, distilled, emulsion, flask, gravity, Hydrophilic, Hydrophobic, insoluble, mass, molarity, precipitates, Solubility, soluble, solution, solution, solvent, solute, suspension, substance