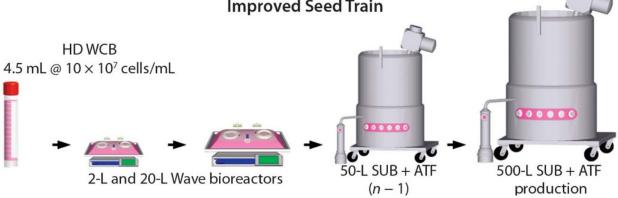
Introduction to USP – Seed Train Development

Your Objectives:

At the end of the lesson, you should be able to sequence the steps in seed train development

]				
A seed train serves to generate an adeq	uate		of cells for the			
inoculation of a production bioreactor. Fro	om volumes us	sed for either cell tha	wing or cell line			
, the cell num	ber will have t	to be increased, rende	ering it both time			
and cost intensive.						
A typical cell	process begin	s with the thawing of	a cryopreserved			
cell-bank vial, followed by successive expansions into larger culture vessels, such as shake flasks, spinners, Wave bags, and stirred bioreactors.						
This approach presents several		: Shake flasks or	spinners used in			
the initial stages require		manipulations inside	a laminar flow			
hood, making them vulnerable to contai conventional cryopreserved cell-bank vial		•				
process is time	. It takes lor	nger and becomes eve	en more complex			
with much larger production		because addition	nal large-volume			
culture are	required to	support scale up t	o a production			


bioreactor. Finally, production bioreactors being usually inoculated at a density of <0.5 \times 106 viable cells/mL also means a necessary growth phase of 5 to 10 days, which is basically

is rather low (as is the initial product yield).

Previous	studies	have	shown	that	high	-densit	y	(HD)	cell	ban	king	can	be
			at red	ucing	the n	umber	of	seed-t	rain	steps	requir	ed v	whilst
			operati	onal su	ccess	in seec	l-tra	in proc	cesses	s, nam	ely usii	ng H	D cell
banks cor	ntaining 4	50 millio	on viable	cells/\	/ial to	direc	tly	inocula	te a	20-L	Wave	bag.	One
particular				reve	aled t	hat the	e us	e of HC	cell-	banks	would	elim	inate
several in	itermediat	e shake	e-flask ex	pansior	۱					tł	nereby	red	ucing
process tir	mes by up	to nine ((9) days.										
Another st	tudy comb	ined HD	cell bank	s with a	a singl	e-seed						са	pable
of operating at several working volumes, thus reducing seed-train expansion duration by as much as 60 to 70 percent.													
Single-use	e technolo	gy actua	ally offers	s nume	rous						over	stai	nless-
steel syste	ems, includ	ding enh	nanced fa	cility fle	exibilit	y, time	9					iı	n set-
up, clean	ing, and					, not	to	menti	on a	redu	ction	in c	apital
investmer	nt. Disposa	ble Wav	e bioreac	tors are	e, ther	efore,	rou	tinely u	ised i	n seed	-train e	expa	nsion
processes	because t	hey also	decrease	2					risk	(typic	ally red	quiri	ng no
manipulat	ions in la	minar-fl	ow hood	s). Bec	ause	such l	oior	eactors	are	dispo	sable,	no	extra
cumberso	me and co	ostly				a	are	needec	l for	assem	ıbly, cl	eani	ng or
sterilizatio	on.												

Perfusion cell-culture processes is in greater demand in this industry as perfusion bioreactors

have shown success in manufacturing	g viable con	nmercial					
Perfusion	can reach	high cell de	ensities in	relatively small			
bioreactor volumes and will remove			product fro	om cultures more			
quickly than the more conventional batch and fed-batch processes. Because of the aforementioned advantages (and others), perfusion has become the preferred production							
over seed	expansion.						
Conver	ntional Seed	Train					
Standard WCB 1 mL @ 2 × 10 ⁷ cells/mL \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow		•	+				
125-mL to 10-L glass spin	iners	50-L SS b (<i>n</i> – 1		500-L SS batch + ATF production			
Impr	oved Seed T	rain					

The illustration compares a novel seed-train process using HD cell banking, disposable Wave bioreactors, and Refine Technology's Alternating Tangential Flow (ATF) perfusion cell-culture technologies over a conventional one. An example of this process for a 500-L production perfusion bioreactor with a conventional seed-train process.

Using the HD cell bank approach involves eliminating two intermediate spinner steps, by allowing for direct inoculation into a 2-L Wave bioreactor. Replacing spinners (125 mL to 10 L) with Wave bioreactors (2 L and 20 L) means significantly reducing the number of required manipulations in a **laminar flow cabinet** (tissue culture hood)*, improving operational success by allowing operation under a "closed" system. Additionally, using ATF perfusion technology at the n – 1 stage (50-L bioreactor with ATF perfusion device) enables cell densities to be \geq 50 × 106 viable cells/mL, allowing for an inoculation density of 5 × 106 viable cells/mL in the 500-L production bioreactor rather than 0.5 × 106 viable cells/mL in the conventional cell culture process. Higher seeding density helps reduce the 500-L production bioreactor growth phase by approximately five days, saving manufacturing plant time for a 500-L bioreactor operating for 50 days.

*A **laminar flow cabinet**, or **tissue culture hood**, is a carefully enclosed bench designed to prevent contamination of semiconductor wafers, biological samples, or any particle sensitive

The Bioreactor Train

Biogen bioreactors are organized into , each being larger than the

next. A bioreactor trains consists of different volumes:

- 60 litre
- 100 litre
- 235 litre
- 750 litre
- 950 litre
- 2000 litre
- 3750 litre
- 15000 litre
- 18500 litre

Each bioreactor feeds into the next. The train is a

continuation of the scale up process that begins with the inoculum preparation stage and ends usually with the harvesting process in the largest bioreactor.

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

advantages, bioreactors, bioreactor, culture, challenges, contamination, concentrations, consuming, effective, improving, maintenance, manual, materials, method, number, processes, study, steps, savings, sterilization, resources, therapeutics, trains, unstable, vessels