Buffer and Media Preparation – What Is a Buffer?

Your Objectives:

At the end of the lesson you should be will able to explain how to make a buffer solution.

A buffer (more precisely, pH buffer or hydrogen ion buffer) is an
solution	n consisting of a mixture of a weak
and its cor	njugate base, or vice versa). Its pH changes insignificantly
when a small amount of strong ac	id or is added to it. Buffer
solutions are used as a means of kee	eping pH at a nearly constant value in a wide variety of
application	ns. In nature, there are many systems that use buffering
for pH . Fo	or example, the bicarbonate buffering system is used to
the pH of b	blood.
рН	
In, pH (de	noting 'potential of or 'power
of hydrogen') is a scale use	ed to specify the or
of an ac	queous solution. Lower pH
correspond to solutions which are m	nore acidic in nature, while higher values correspond to
solutions which are more basic or	. At room temperature (25 C or 77
F), pure water is neutral (neither acidio	c nor basic) and has a pH of 7.

Substance	pH range	Туре
Battery acid	< 1	
Gastric acid	1.0 – 1.5	
Vinegar	2.5	Acid
Orange juice	3.3 – 4.2	
Black coffee	5 – 5.03	
Milk	6.5 – 6.8	
Pure water	7	Neutral
Sea water	7.5 – 8.4	
Ammonia	11.0 – 11.5	
Bleach	12.5	Base
Lye	13.0 – 13.6	

The pH	is	logarithmic and inversely i	indicates the concentration of
	ions in the		(a lower pH indicates a higher

concentration of hydrogen ions). More precisely, pH is the negative of the base-10 logarithm of the activity of the hydrogen ion.

•

At 25°C, solutions w	vith a pH less than 7 are		, and sol	utions with a pH
greater than 7 are		. The		value of the pH

depends on the temperature being lower than 7 if the temperature increases. The pH value can be less than 0 for very strong acids, or greater than 14 for very strong bases. The pH scale is traceable to a set of standard solutions whose pH is established by international

Buffer solutions achieve their		to pH change because of the presence
of an	between the weak acid	HA and its conjugate base A⁻:

 $HA \rightleftharpoons H^+ + A^-$

When some strong acid is added to an equilibrium mixture of the weak acid and its conjugate base, hydrogen ions (H+) are added, and the equilibrium is shifted to the left, in accordance

with Le Châtelier's . Because of this, the hydrogen ion

increases by less than the amount expected for the quantity of

strong acid added. Similarly, if strong alkali is added to the mixture, the hydrogen ion concentration decreases by less than the amount expected for the quantity of alkali added. The

is illustrated by the simulated titration of a weak acid with pKa =

4.7. The relative concentration of undissociated acid is shown in blue, and of its

The		changes relatively slowly	in the	
regio decre	n, pH = pKa \pm 1, centered a eases by less than the am	at pH = 4.7, where [HA] = [A- ount expected because mo	-]. The h st of th	nydrogen ion concentration ne added hydroxide ion is
consi	umed in the			
	OH− + HA \rightarrow H2O + A−			
and o	only a little is consumed in	the	read	ction (which is the reaction
that results in an increase in pH)				
	OH− + H+ \rightarrow H2O.			
Once	the acid is more than 95%	deprotonated, the pH		rapidly since
most	of the added alkali is consu	med in the neutralization rea	action.	

Helpful link: <u>https://www.khanacademy.org/science/ap-chemistry/buffers-titrations-solubility-</u>equilibria-ap/buffer-solutions-tutorial-ap/v/buffer-system

The pH of a solution containing a b	buffering	can only vary wit	hin a	
narrow,	, regardless of what else	e may be present in the solution	on. In	
systems	this is an essential cond	lition for		
to function correctly. In human blood, for instance, we find a mixture of carbonic acid (H_2CO_3) and bicarbonate (HCO_3^-) present in the plasma fraction, which constitutes the major				
mechanism for maintaining the		level of blood at between 7.35	5 and	

7.45. Outside this narrow range (7.40 \pm 0.05 pH unit), acidosis and alkalosis metabolic conditions rapidly develop, ultimately leading to death if the correct buffering capacity is not rapidly restored.

If the pH value of a			rises or fa	lls too much, the	e effectiveness of an
enzyme decreases	in a process	s, known as			, which is usually
irreversible. The maj	ority of biolo	ogical		that are	used in research are
kept in a buffer solut	ion, often ph	iosphate buffe	red saline (PBS) at pH 7.4.	
In industry,		agents a	ire used in	fermentation pr	ocesses as well as in
setting the correct co	onditions for	dyes used in c	olouring fa	brics. They are a	lso used in chemical
	and			of pH meters.	

Simple buffering agents

Buffering agent	Useful pH range
Citric acid	2.1–7.4
Acetic acid	3.8–5.8
KH ₂ PO ₄	6.2–8.2
CHES	8.3–10.3
Borate	8.25–10.25

For buffers in acidic	, the pH	may be to a
desired value by adding a	ē	acid, such as hydrochloric acid, to the
particular buffering agent. F	or alkaline buffers, a strong	g base, such as sodium hydroxide, may
be added. Alternatively, a b	uffer	can be made from a mixture of an

acid and its conjugate base. For example, an acetate buffer can be made from a mixture of acetic acid and sodium acetate. Similarly, an alkaline buffer can be made from a mixture of the base and its conjugate acid.

Aufgabe Lückentext:

Folgende Wörter bitte in den Lückentext einfüllen. Jedes Wort kommt einmal vor. Bitte Gross- und Kleinbuchstaben beachten.

aqueous, analysis, agreement, acidity, acid, acidic, adjusted, agent, alkaline, base, basicity, basic, biological, buffer, buffering, calibration, chemical, chemistry, concentration, conjugate, denaturation, equilibrium, effect, enzymes, hydrogen', hydrogen, mixture, neutral, neutralization, principle, pH, pH, range, regulation, regions, regulate, reaction, resistance, rises, samples, solution, solution, solution, scale, strong, values,